Extensive-form games:

 applications- Stackelberg model
- Spence-Dixit model

■ Rubinstein bargaining model

Stackelberg model

- Consider a Stackelberg duopoly game with symmetric technologies.
- There are two inputs K (capital) and L (labor).
- Firms have the same Leontief production functions:

$$
q_{i}=\min \left\{L_{i}, K_{i}\right\}
$$

- The cost of L is w and the cost of K is r, hence the cost functions are:
- $\quad T C\left(q_{i}\right)=(w+r) q_{i}$
- The (inverse) demand curve: $P=1-Q$
- Firm 1 (leader) chooses q_{1} first and then firm chooses q_{2}

Stackelberg model - solution

\square We solve the game backwards. In stage 2, firm 2 maximizes its profit:
$\Pi_{2}=\left(1-q_{1}-q_{2}\right) q_{2}-(w+r) q_{2}$

- F.O.C: $1-2 q_{2}-q_{1}-(w+r)=0$
\square Best response: $q_{2}^{R}=\frac{1-q_{1}-(w+r)}{2}$
- Firm 1 maximizes:

$$
\begin{aligned}
& \Pi_{1}=\left(1-q_{1}-q_{2}^{R}-(w+r)\right) q_{1}= \\
& =\left(1-q_{1}-\frac{1-q_{1}-(w+r)}{2}-(w+r)\right) q_{1}=\frac{1-q_{1}-(w+r)}{2} q_{1}
\end{aligned}
$$

Stackelberg-solution

- F.O.C. for firm 1

$$
\frac{1-2 q_{1}-(w+r)}{2}=0
$$

- Solution:

$$
\begin{aligned}
q_{1}^{s} & =\frac{1-(w+r)}{2} \\
q_{2}^{s} & =\frac{1-(w+r)}{4}
\end{aligned}
$$

- Firm 1 has an advantage and makes 2x more profit than firm 2

Spence-Dixit model of entry deterrence

- Step 1. An incumbent firm (1) chooses the capacity level k. Installing capacity costs r per unit.
- Step 2. A potential entrant firm (2) decides whether to enter the market or not. If enters, pays the fixed cost F.
- Step 3. Firm 1's marginal cost is w for the first k units, and $(w+r)$ for all units above k. If firm 2 stays out, firm 1 acts as a (static) monopolist. If firm 2 enters, they compete as in Cournot model, but firm 2's marginal cost is $(w+r)$ for all units.

Spence-Dixit - solution

- In step 3, if firm 2 enters, the F.O.C.s are

$$
\begin{aligned}
& 1-2 q_{1}-q_{2}-w=0 \\
& 1-2 q_{2}-q_{1}-w-r=0
\end{aligned}
$$

- and the equilibrium quantities are

$$
q_{1}^{D}=\frac{1-w+r}{3} \quad q_{2}^{D}=\frac{1-w-2 r}{3}
$$

- provided that $q_{1} \leq k$
- we will not worry about the case $q_{1}>k$ for reasons that will become apparent

Spence-Dixit - solution

- In step 3, if firm 2 stayed out, firm 1 is a monopolist and chooses where c is the marginal cost
- In step 2, firm 2 enters iff $\Pi_{2}\left(q_{2}{ }^{D}\right)>0$
- In step 1, firm 1 chooses k. There are 3 cases:
■ Blockaded entry: firm 2 will not enter even if firm 1 installs $k=0$
- Entry deterred: firm 1 discourages firm 2 from entering by overinvesting, i.e. choosing some $k>q_{1}{ }^{M}$ (what a pure monopolist would produce)
- Entry accommodated: firm 1 chooses $k=q_{1}{ }^{D}$ and firm 1 enters

Rubinstein bargaining model

- This is a (potentially) infinitely repeated version of the ultimatum game
- Player 1 begins by offering a split of $1 \$$ to player 2
- Player 2 accepts or rejects
- If rejects, he makes the next offer of split, except the $1 \$$ decreases to $\$ \delta$ - discount factor
- Players alternate their offers until there is an agreement

Rubinstein model - solution

- Let $\left(\mathrm{s}_{\mathrm{t}}, 1-\mathrm{s}_{\mathrm{t}}\right)$ denote the split offered in period t
- Suppose that the players know that if they don't come to an agreement after 2 stages (2 offers), they will receive the split (s, $1-s)$
- In stage 2,
- player 2 is choosing between proposing an acceptable offer or getting $\delta(1-s)$ after rejection
- the best acceptable offer is $\mathrm{s}_{2}=\delta s$ (what player 1 gets in stage 3 afetr rejection)
- hence the offer in stage 2 will be ($\delta s, 1-\delta s$)
- In stage 1,
- player 1 is choosing between proposing an acceptable offer or getting δ^{2} s after rejection
- the best acceptable offer is $\mathrm{s}_{1}=1-\delta(1-\delta s)(1-$ what player 2 gets in stage 3 after rejection)
- hence the offer in stage 1 will be (1- $\delta(1-\delta s), \delta(1-\delta s))$

Rubinstein - solution

- OK, but there is no final period. How do we know that s exists? What is it?
- Let s_{H} be the highest share that player 1 can expect in this game. By the above argument we know that the highest first-period share is $1-\delta\left(1-\delta s_{H}\right)$. But since all subgames starting at odd periods look the same,

$$
\mathrm{s}_{\mathrm{H}}=1-\delta\left(1-\delta \mathrm{s}_{\mathrm{H}}\right) \rightarrow \mathrm{s}_{\mathrm{H}}=1 /(1+\delta)
$$

- Let $s_{\llcorner }$be the lowest share that player 1 can expect in this game. By the above argument we know that the highest first-period share is $1-\delta\left(1-\delta s_{\llcorner }\right)$. But since all subgames starting at odd periods look the same,

$$
\mathrm{s}_{\mathrm{L}}=1-\delta\left(1-\delta \mathrm{s}_{\mathrm{L}}\right) \rightarrow \mathrm{s}_{\mathrm{L}}=\mathrm{s}_{\mathrm{H}}=1 /(1+\delta)
$$

- Hence the only equilibrium is for player 1 to offer $(1 /(1+\delta), \delta /(1+\delta))$ and for player 2 to accept

Extensive-form games with imperfect information

- This game can be represented as...

Extensive-form games with imperfect information

- This, the dotted line connects decision nodes that are in the same information set

